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Abstract

Missing covariate data commonly occur in epidemiological and clinical research, and are often dealt with

using multiple imputation. Imputation of partially observed covariates is complicated if the substantive

model is non-linear (e.g. Cox proportional hazards model), or contains non-linear (e.g. squared) or

interaction terms, and standard software implementations of multiple imputation may impute

covariates from models that are incompatible with such substantive models. We show how imputation

by fully conditional specification, a popular approach for performing multiple imputation, can be modified

so that covariates are imputed from models which are compatible with the substantive model. We

investigate through simulation the performance of this proposal, and compare it with existing

approaches. Simulation results suggest our proposal gives consistent estimates for a range of common

substantive models, including models which contain non-linear covariate effects or interactions, provided

data are missing at random and the assumed imputation models are correctly specified and mutually

compatible. Stata software implementing the approach is freely available.
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1 Introduction

Missing data are a pervasive problem in both experimental and observational medical research,
causing a loss of information and potentially biasing inferences. In this article, we focus on settings
in which interest lies in fitting a substantive model relating an outcome to a number of covariates,
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one or more of which have missing values. The method of multiple imputation (MI) has become an
extremely popular approach for accommodating missing data in statistical analyses, both generally1

and in the specific context of partially observed covariates.2 MI involves ‘filling in’ each missing
value with draws from an appropriate distribution, leading to a number M of completed datasets.
The substantive model can then be fitted to each of the M completed datasets, and the results
combined across the M datasets using Rubin’s rules,3 which account for the uncertainty due to
the fact data have been imputed. MI is most often applied under the missing at random (MAR)
assumption, which stipulates that the probability that data are missing are independent of the
missing values, conditional on the observed data, although MI can also be used when data are
missing not at random.3

Parametric MI as originally proposed is based on a joint imputation model for the partially
observed variables (conditional on any fully observed variables), which we refer to as ‘joint
model MI’. A popular alternative to joint model MI is the fully conditional specification (FCS)
approach.4,5 FCS MI involves specifying a series of univariate models for the conditional
distribution of each partially observed variable given the other variables. This permits a great
deal of flexibility, since an appropriate regression model can be selected for each variable (e.g.
linear regression for continuous variables, logistic regression for binary variables). Consequently,
FCS MI is particularly appealing in settings in which a number of variables have missing data, some
of which are continuous and some of which are discrete.

One of the strengths of MI is that it divides the process of dealing with missingness (the
imputation stage) from the analysis of the completed data (the analysis stage). As has been
previously discussed in detail, this division presents both opportunities and threats.6–9. For
example, we may be able to include so-called auxiliary variables in the imputation model which
are not used in the analysis stage. This offers the potential for increased efficiency and may also
improve the plausibility of the MAR assumption holding, by conditioning on auxiliary variables
which are predictive of missingness. Sometimes the imputer and analyst will be different people. If
the imputer has additional knowledge which enables him to impose (correct) additional assumptions
in the imputation model, the analyst will gain efficiency.

The division may however sometimes lead to problems. In the context of imputing partially
observed covariates, imputations might be generated from a model which is incompatible with the
substantive model, which may lead to (asymptotically) biased estimates of parameters in the latter.
Two conditional models are said to be incompatible if there exists no joint model for which the
conditionals (for the relevant variables) equal these conditional models. This is a particular issue
when the substantive model contains non-linear covariate effects or interactions, with which default
imputation model choices may be incompatible. For example, suppose the substantive model is the
linear regression of Y on a continuous covariate X and X2, and we wish to impute missing values in
X. The default choice for the imputation model for XjY in software for MI is a normal linear model,
with conditional mean equal to a linear function of Y, which is incompatible with the quadratic
substantive model. Following imputation of X, X2 is then passively imputed by squaring the imputed
X values. In this case, estimates of the parameters of the substantive model from multiply imputed
datasets will be biased (unless the quadratic coefficient is in truth zero), because within the subset of
data where X has been imputed the association between X and Y is linear as a consequence of
assuming linearity in the imputation model.10

Incompatibility between the imputation and substantive models can be avoided by specifying a
joint model for outcome and covariates for which the conditional distribution of outcome given
covariates matches the substantive model and then using the imputation model implied by this joint
model. However, specification of a joint model is challenging when there are a number of partially
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observed covariates, particularly when some are continuous and some are discrete. In this setting,
the FCS method is an attractive option. However, the default univariate imputation models used in
FCS may be incompatible with the substantive model. In this article, we therefore propose a
modification of the popular FCS approach to MI which ensures that each of the univariate
imputation models is compatible with the assumed substantive model.

We begin in Section 2 by introducing a motivating example from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). In Section 3, we formally define compatibility between an
imputation model for partially observed covariates and a substantive model, explain when
incompatibility implies imputation model mis-specification and give examples of when this
occurs. We then outline how imputation models can be specified which are compatible with a
given substantive model within the joint modelling approach to MI, which motivates our
modification of the FCS MI approach. In Section 4, we briefly review the standard FCS
framework for MI in the setting of partially observed covariates. In Section 5, we describe our
modification of the FCS MI approach which ensures that each univariate imputation model is
compatible with the substantive model. In Section 6 we give details for how this can be done
when the model of interest is (i) normal linear regression, (ii) a model for a discrete outcome (e.g.
logistic and Poisson regression) or (iii) a proportional hazards model. We report the results of a
simulation study to investigate the performance of our proposed approach in Section 7. In Section 8,
we apply our proposed approach to the motivating example. In Section 9, we discuss how our
proposed approach can be used when, as is often the case, interest lies in fitting a number of
different substantive models to the data. We conclude in Section 10 with a discussion.

2 Motivating example

The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and nonprofit organisations, as a 5-year public–private
partnership. The aims of ADNI included assessing the ability of imaging and other biomarkers to
measure the progression of mild cognitive impairment and early Alzheimer’s disease (AD). The
study aimed to recruit approximately 200 cognitively normal older individuals (controls), 400
with mild cognitive impairment (MCI) and 200 with early AD. Participants underwent clinical
and cognitive assessment and MRI brain scans at baseline and at specified intervals (every 6 or
12 months, depending on subject group) up to 3 years. Further details regarding ADNI are given in
the acknowledgements.

Recently Jack et al.11 used data from ADNI to investigate baseline predictors of time to
conversion to AD in those subjects with MCI at baseline. In particular, using Cox proportional
hazards models they found evidence of a non-linear association between amyloid � 1-42 peptides
(A�1�42) measured from cerebrospinal fluid (CSF) at baseline and log hazard of conversion. They
found evidence that lower baseline hippocampal volume was predictive of increased hazard, after
adjusting for total intracranial volume (a measure of head size). Jack et al.11 also found evidence that
the presence of the APOE4 gene, previously shown to be associated with development of AD in a
number of studies, was associated with increased hazard for conversion to AD.

Participants were invited to have CSF measured at baseline by lumbar puncture, but were not
required to do so to participate in the study. Consequently, only around 50% of subjects had CSF
A�1�42 measured. The analysis of Jack et al.11 was restricted to the subset of n¼ 218 MCI subjects
for whom CSF A�1�42 was measured. In a logistic regression analysis we found no evidence that
availability of CSF was related to first of time to conversion to AD or censoring, or to the event
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indicator (joint test p¼ 0.48). A second logistic regression model found evidence (p¼ 0.02) that
having a family history of AD was associated with an increased probability of having the CSF
variables recorded, which seems quite plausible since those with a family history of AD may be
especially concerned about their risk of developing the disease. These results suggest a complete case
analysis might reasonably be assumed to be unbiased. However, it is inefficient, since it only uses
data on 50% of MCI subjects.

MCI is a heterogeneous classification, with only a certain proportion of subjects eventually going
on to develop AD. For each subject their family history was collected at baseline, in particular in
relation to whether their mother or father suffered from dementia or AD. Given that there is a
genetic component to the disease, we were interested to investigate whether the presence of family
history of AD was associated with increased hazard of conversion to AD, by including covariates
indicating whether the subject’s mother and father had had AD (Table 1). Unfortunately, although
family history of dementia was well recorded, family history of AD specifically suffered from
missingness (see Table 1).

We aimed to estimate the parameters of a Cox proportional hazards model for hazard of
conversion to AD using the available data from the n¼ 382 ADNI subjects who had MCI at
baseline and who had at least one follow-up visit. Of these subjects, 167 were observed to convert
to AD during follow-up. Our substantive model contained as covariates the variables listed in
Table 1, plus the square of A�1�42 to allow for the non-linear association previously identified by
Jack et al.11. In addition to CSF A�1�42, we included CSF tau and p-tau as covariates, which are
also thought to reflect pathology, and thus might be associated with hazard of conversion to AD.
Tau and p-tau were log transformed to reduce skewness in their distribution. The FCS approach to
MI is attractive here, since seven covariates are partially observed, with some continuous and some
binary. However, we should be careful to ensure that the imputation models we use are compatible
with the substantive model, which includes a quadratic effect of one of the partially observed
covariates. If we impute from a model which does not allow for a potential non-linear
association between (log) hazard and CSF A�1�42, we would expect to obtain inconsistent
parameter estimates, particularly of the coefficients relating to CSF A�1�42.

Table 1. Baseline characteristics of n¼ 382 ADNI subjects with MCI at baseline.

Variable

Mean (SD) or no.

(% of observed)

No. of missing

values (%)

A�1�42 (ng/mL) 16.4 (5.5) 190 (49.7%)

log(tau) (log pg/mL) 4.50 (0.49) 193 (50.5%)

log(p-tau) (log pg/mL) 3.44 (0.50) 189 (49.5%)

Mother had AD 77 (25.3%) 77 (20.2%)

Father had AD 26 (9.0%) 93 (24.3%)

Intracranial volume (cm3) 1474 (150) 43 (11.3%)

Hippocampal volume (cm3) 6.47 (1.04) 43 (11.3%)

APOE4 positive 207 (54.2%) 0 (0%)

ADNI: Alzheimer’s Disease Neuroimaging Initiative; MCI: mild cognitive impairment;

AD: Alzheimer’s disease.
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3 MI of partially observed covariates

3.1 Setup

We consider the setting in which interest lies in fitting a model to a fully observed outcome Y
(although see Section 10) with p partially observed covariates X ¼ ðX1, . . . ,XpÞ and q fully
observed covariates Z ¼ ðZ1, . . . ,ZqÞ. Let Xobs and Xmis denote the observed and missing
components of X for a given subject, and let R be the vector of observation indicators whose
elements are zero or one depending on whether the corresponding element of X is missing or
observed. We assume throughout that the data are MAR.12 Here, MAR means that
PðRjY,X,ZÞ ¼ PðRjY,Xobs,ZÞ. We assume that ðYi,Xi,Zi,RiÞ, i ¼ 1, . . . , n are independent and
identically distributed. Lastly, we let f ðYjX,Z, Þ denote the ‘substantive model’, which is indexed
by parameter  ( 2 �). We assume throughout that this substantive model is correctly specified.
That is, there exists  2 � such that f0ðYjX,ZÞ ¼ f ðYjX,Z, Þ, where f0ðYjX,ZÞ denotes the true
conditional distribution of Y given X and Z.

3.2 MI of partially observed covariates

In Bayesian parametric MI, to multiply impute missing values in X we specify a parametric model
f ðXjZ,Y,!Þ,! 2 � for the conditional distribution f ðXjY,ZÞ. To create the mth imputed dataset we
first draw !ðmÞ from its posterior distribution given the observed data fðY,Xobs,ZÞ; i ¼ 1, . . . , ng and
a (usually noninformative) prior f(!). For each subject the missing values (if any) Xmis are imputed
by taking a draw from the density f ðXmisjXobs,Y,Z,!ðmÞÞ implied by f ðXjY,Z,!ðmÞÞ.

Having created M imputed datasets, the substantive model parameter  is then estimated
separately using each imputed dataset, resulting in estimates  ̂1, . . . ,  ̂M and corresponding
variances dVarð ̂1Þ, . . . ,dVarð ̂MÞ. In this article, we assume that the substantive model is fitted
using maximum likelihood. Rubin’s rules are then invoked to provide a final inference for  ,
with the estimator of  given by

 ̂MI ¼

PM
m¼1  ̂

m

M

and an estimate of the variance of  ̂MI given by

dVarð ̂MIÞ ¼
1

M

XM
m¼1

dVarð ̂mÞ

" #
þ ð1þ 1=MÞ

1

M� 1

XM
m¼1

ð ̂m �  ̂MIÞ
2

" #

Suppose that the posited imputation model is correctly specified, so that there exists a value of ! 2 �
such that f0ðXjY,ZÞ ¼ f ðXjZ,Y,!Þ. Then  ̂MI is a consistent estimator of  , and as the number of
imputations M!1, confidence intervals (CIs) based on dVarð ̂MIÞ achieve coverage at or above
their nominal level.6

3.3 Compatibility and imputation model mis-specification

When an imputation model f ðXjZ,Y,!Þ is directly specified, it may be mis-specified if it is not
compatible with the substantive model (assuming this is correctly specified). For example, if the
correctly specified substantive model includes an interaction between a partially observed covariate
and a fully observed covariate in their effect on the outcome Y, imputation models which do not
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allow for this interaction will generally (unless the interaction term is in truth zero) be mis-specified.
Such considerations led to recommendations that imputation models be used which do not impose
restrictions which will conflict with subsequent analyses of the imputed datasets.6,7

Extending a definition given by Liu et al.,13 we now define the notion of compatibility between a
set of conditional models. Let A ¼ ðA1, . . . ,ApÞ be a vector of random variables, and let
A�j ¼ ðA1, . . . ,Aj�1,Ajþ1, . . . ,ApÞ. Let B denote a further, possibly empty, vector of random
variables. Then a set of conditional models ffj ðAj jA�j,B, �j Þ; �j 2 �j, j ¼ 1, . . . , pg is said to be
compatible if there exists a joint model gðAjB, �Þ, � 2 � and a collection of surjective maps
ftj : �! �j; j ¼ 1, . . . , pg such that for each j, �j 2 �j and � 2 t�1j ð�j Þ ¼ f� : tj ð�Þ ¼ �jg

fj ðAj jA�j,B, �j Þ ¼ gðAj jA�j,B, �Þ

Otherwise the set of models ffj; j ¼ 1, . . . , pg is said to be incompatible.
A weaker property which we shall also use is that of semi-compatibility for a set of models. A set

of models is semi-compatible if they can be made compatible by setting one or more parameters
to zero. More formally (again following Liu et al.13), a set of conditional models
fhj ðAj jA�j,B, �j, �j Þ; �j 2 �j, �j 2 Kj, j ¼ 1, . . . , pg is said to be semi-compatible if there exists a set
of compatible conditional models ffj ðAj jA�j,B, �j Þ; �j 2 �j, j ¼ 1, . . . , pg such that

fj ðAj jA�j,B, �j Þ ¼ hj ðAj jA�j,B, �j, �j ¼ 0Þ

for j¼ 1, . . . , p. A set of compatible conditional models is always semi-compatible. If the joint model
gðAjB, �Þ corresponding to the set of conditionals ffj; j ¼ 1, . . . , pg is correctly specified (i.e. contains
the true probability distribution), we say (again following Liu et al.13) that the set of models
fhj; j ¼ 1, . . . , pg is valid semi-compatible.

The imputation model f ðXjZ,Y,!Þ is correctly specified if and only if it is valid semi-compatible
with the substantive model f ðYjX,Z, Þ. As an example, suppose the substantive model is
YjX � Nð 0 þ  1Xþ  2X

2, �2 Þ and the imputation model is XjY � Nð!0 þ !1Y, �
2
!Þ. These two

models are incompatible (this can be established by the theorem for compatibility of two conditional
densities of Arnold and Press14). They are semi-compatible, with the joint model for (X, Y) being the
bivariate normal, by setting  2 ¼ 0. However, they are not valid semi-compatible, unless in truth
 2 ¼ 0. The imputation model is therefore mis-specified in general, and the MI estimator  ̂MI will be
inconsistent, as demonstrated through simulation by von Hippel15 and Seaman et al.10

It is important to note that incompatibility between the imputation and substantive models does
not necessarily imply mis-specification of the former. For example, suppose the substantive model is
YjX � ð 0 þ  1X, �

2
 Þ and the imputation model is XjY � Nð!0 þ !1Yþ !2Y

2, �2!Þ, with each of
the regression coefficients lying in ð�1, þ1Þ. Then again the two models are incompatible, but are
semi-compatible, with joint model the bivariate normal, by setting !2¼ 0. If the data in truth are
bivariate normal, the two models are valid semi-compatible, and the imputation model is correctly
specified. Here, incompatibility between imputation and substantive models does not imply mis-
specification of the former because a more restrictive version of the imputation model (with !2¼ 0)
is compatible with the substantive model.

Incompatibility may also arise when default imputation models are used for covariates in non-
linear substantive models. For example, suppose T (rather than Y) is a time to event outcome which
is not subject to censoring, and that the substantive model is the parametric exponential model, with
hazard function hðtÞ ¼ h0 expð XÞ, with X a continuous partially observed covariate and h0 a time
constant baseline hazard. In this case H0ðTÞ ¼

R T
0 h0dt ¼ h0T. Then suppose, following the recent
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recommendations of White and Royston,16 we adopt a normal linear imputation model
for XjT � Nð!0 þ !1T, �

2
!Þ with T / H0ðTÞ as covariate. The two models are incompatible,

and are only semi-compatible by setting !1¼ 0 and  ¼ 0, such that T and X are
independent. The imputation model can thus only be valid semi-compatible (and thus correctly
specified) with the substantive model if T and X are independent. The MI estimator  ̂MI will thus
generally be inconsistent (although simulations by White and Royston16 show the bias is often
small).

In conclusion, except in cases where the imputation and substantive models can be made
compatible by restricting the parameter space � of the imputation model, incompatibility
between the two implies the imputation model is mis-specified (assuming correct specification of
the substantive model). Consequently, when choosing the covariate imputation model f ðXjZ,Y,!Þ
we should (at least) ensure that it is either compatible with the substantive model, or a restriction of
it is compatible with the substantive model.

3.4 Joint model imputation

The natural route to ensuring compatibility between the imputation and substantive models is to
explicitly specify a joint model gðY,XjZ, �Þ which has the substantive model f ðYjX,Z, Þ as its
corresponding conditional, and to derive the implied imputation model. Given the (correctly)
specified substantive model f ðYjX,Z, Þ, such joint models are specified by defining a model
f ðXjZ,�Þ. The imputation model is then given by

f ðXjZ,Y, ,�Þ ¼
f ðY,XjZ, ,�Þ

f ðYjZ, ,�Þ
¼

f ðYjX,Z, Þ f ðXjZ,�Þ

f ðYjZ, ,�Þ

/ f ðYjX,Z, Þ f ðXjZ,�Þ

ð1Þ

We emphasise that using a compatible imputation model does not guarantee it is correctly specified –
this is only true if, in addition to the substantive model being correctly specified, f ðXjZ,�Þ is
correctly specified.

In cases where p¼ 1 and X is univariate, specification of a model f ðXjZ,�Þ is relatively
straightforward. When X is multivariate, and particularly when it contains a mixture of
continuous and discrete variables, specification of a joint model f ðXjZ,�Þ becomes more
challenging. In this setting, Ibrahim et al.17 proposed specification by factorising the joint
distribution of XjZ as a product of univariate densities of the form

f ðX1jZÞ f ðX2jX1,ZÞ f ðX3jX1,X2,ZÞ . . . : ð2Þ

This breaks the problem of joint specification into the easier task of specification of a series of
univariate models. This means that appropriate univariate regression models can be specified
depending on the type (i.e. continuous, discrete and ordered discrete) of each variable.
However, as the dimension of X increases the number of possible orderings of its
components increases rapidly, and it is not obvious which ordering should be chosen. As far as
we are aware, this approach to MI has not been adopted by applied researchers. A new joint
modelling approach for handling interactions and non-linearities has recently been proposed by
Goldstein et al.18
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4 FCS MI

In the more general setting of MI in multivariate data, the FCS approach to MI similarly splits the
task of specification of a joint model into a series of univariate model specifications. In FCS MI, as
we describe in further detail in Section 4.1, models are specified for each partially observed variable
conditional on all other variables. In contrast to the approach proposed by Ibrahim et al.,17 there is
no requirement to choose an ordering of the partially observed variables. FCS MI has now become
an extremely popular approach to MI generally.5

Application of FCS for imputation of partially observed covariates involves specification of
models of the form f ðXj jX�j,Z,YÞ, where X�j denotes the components of X with Xj removed. As
we have described, for certain substantive models, such as those involving non-linear covariate
effects or interactions, default choices of these imputation models within FCS will be
incompatible. Further, they will not generally be valid semi-compatible with the substantive
model, and will therefore be mis-specified (assuming correct specification of the substantive
model). In the next sub-section, we review the standard FCS algorithm in detail, and then in
Section 5 propose a modification of FCS MI which ensures that each of the covariate models
f ðXj jX�j,Z,YÞ is compatible with the substantive model.

4.1 The FCS algorithm

For each partially observed covariate Xj, we posit an imputation model f ðXj jX�j,Z,Y, �j Þ, with
parameter �j, where X�j ¼ ðX1, . . . ,Xj�1,Xjþ1, : . . .XpÞ. This is typically a generalised linear model
chosen according to the type of Xj (e.g. continuous, binary and count). Furthermore, a
noninformative prior distribution f(�j) for �j is specified. Let xobsj and xmis

j denote the vectors of
observed and missing values in Xj for the n subjects. Let y and z denote the vector and matrix of
(fully observed) values of Y and Z across the n subjects.

The FCS algorithm begins by replacing the missing values in each Xj by randomly selected
observed values from the same variable. The algorithm then proceeds by repeatedly imputing the
missing values in each variable, at each stage conditioning on the most recent imputations of the
other variables. Let x

misðtÞ
j denote the imputations of the missing values xmis

j at iteration t and let
x
ðtÞ
j ¼ ðx

obs
j , x

misðtÞ
j Þ denote the vector of observed and imputed values at iteration t. Let

x
ðtÞ
�j ¼ ðx

ðtÞ
1 , . . . , x

ðtÞ
j�1, x

ðt�1Þ
jþ1 , . . . , xðt�1Þp Þ. The tth iteration of the algorithm consists of drawing from

the following distributions (up to constants of proportionality)

�ðtÞ1 � f ð�1Þ f ðx
obs
1 jx

ðtÞ
�1, z, y, �1Þ

x
misðtÞ
1 � f ðxmis

1 jx
ðtÞ
�1, z, y, �

ðtÞ
1 Þ

�ðtÞ2 � f ð�2Þ f ðx
obs
2 jx

ðtÞ
�2, z, y, �2Þ

x
misðtÞ
2 � f ðxmis

2 jx
ðtÞ
�2, z, y, �

ðtÞ
2 Þ

..

.

�ðtÞp � f ð�pÞ f ðx
obs
p jx

ðtÞ
�p, z, y, �pÞ

xmisðtÞ
p � f ðxmis

p jx
ðtÞ
�p, z, y, �

ðtÞ
p Þ

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

ð3Þ
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Thus, for the partially observed covariate Xj the algorithm first draws �j from its posterior
distribution given xobsj , x

ðtÞ
�j, z, y. This is equal (up to a constant of proportionality) to the product

of the prior f(�j) and the likelihood corresponding to fitting the imputation model for Xj to subjects
for whom Xj is observed, using the observed and most recently imputed values of X�j. Missing
values in Xj are then imputed from the imputation model using the parameter value drawn in the
preceding step. After a sufficient number of iterations it is assumed that the algorithm has converged
to a stationary distribution, and the final draws of the missing data form a single imputed dataset.
The process is then repeated to create as many imputed datasets as desired. In software
implementations of FCS MI, the variables are typically updated in the ordering for which the
missingness pattern is closest to monotone. Finally, the substantive model is fitted to each
imputed dataset, and the results combined using Rubin’s rules as described previously.

Note that when drawing �j, the FCS algorithm differs from a standard Gibbs sampler, which
would draw �j from its posterior distribution proportional to f ð�j Þ f ðx

misðt�1Þ
j , xobsj jx

ðtÞ
�j, z, y, �j Þ, that is,

the posterior corresponding to fitting the imputation model to all subjects, using the last iteration’s
imputation of Xmis

j , x
misðt�1Þ
j .

4.2 Statistical properties

Despite the fact that FCS MI has been applied widely in a number of fields,5 until recently few
results were available regarding its validity. This is due to the fact that one can specify imputation
models (which in our setting are f ðXj jX�j,Z,Y, �j Þ) that are not mutually compatible.19 In this case,
it is not clear to what distribution, if any, the algorithm will converge.

Hughes et al.20 have recently given conditions under which, at convergence, FCS draws
imputations from a well-defined Bayesian joint model, which are as follows:

(1) The conditional models f ðXj jX�j,Z,Y, �j Þ, j ¼ 1, . . . , p, are compatible, with corresponding
joint model f ðXjZ,Y, �Þ.

(2) For each j¼ 1, . . . , p, this joint model can be factorised as f ðXjZ,Y, �Þ
¼ f ðXj jX�j,Z,Y, �j Þ f ðX�jjZ, ��jÞ, where ð�j, ��jÞ is a reparameterisation of �, and �j and ��j
are variationally independent.

(3) There exists a prior f(�) such that for each j¼ 1, . . . ,p, f ð�Þ ¼ f ð�j Þ f ð��jÞ, where f ð�j Þ is the prior
used by FCS.

Hughes et al.20 show that these conditions are satisfied when the conditional models are normal
linear regression models, with the corresponding joint model being the multivariate normal, and the
standard noninformative priors are used. Separately, Liu et al.13 have given sufficient conditions
under which the stationary distribution (assuming it exists) which FCS MI draws from converges
(as n!1) to the posterior distribution of the missing data in a well-defined Bayesian model.

Both Hughes et al.20 and Liu et al.13 give examples where compatible conditional models are used
but FCS is not equivalent to imputation from a Bayesian joint model. A common, and therefore
important, example is that in which a binary variable is imputed using logistic regression conditional
on a continuous variable, with the latter imputed using a normal linear regression model. Although
these models are compatible with each other, FCS imputation fails to utilise the information
contained in the marginal distribution of the continuous variable about the logistic regression
parameters, and consequently FCS MI does not draw from a Bayesian joint model.

Even when the conditional models are not compatible, Liu et al.13 show that provided the
conditional models are valid semi-compatible, the estimator  ̂MI is consistent. This result can be
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used to conclude that in the linear-logistic example described in the previous paragraph, in which the
models are compatible (and therefore also semi-compatible)  ̂MI is consistent provided both models
are correctly specified. Note however that since valid semi-compatibility does not guarantee FCS is
equivalent to imputation from a Bayesian joint model, there is no guarantee that Rubin’s rule for the
variance will provide valid inferences in this case. If the conditional models used are not even semi-
compatible, in general we expect inconsistent estimates.

5 FCS imputation accommodating the substantive model

In this section, we describe how the standard FCS algorithm, described in Section 4, can be modified
to ensure that each of the univariate imputation models used is compatible with the substantive
model. We term the algorithm substantive model compatible FCS (SMC-FCS). To specify an
imputation model for Xj, j¼ 1, . . . , p which is compatible with the substantive model, we note that

f ðXj jX�j,Z,YÞ ¼
f ðY,Xj,X�j,ZÞ

f ðY,X�j,ZÞ

/ f ðYjXj,X�j,ZÞ f ðXj jX�j,ZÞ

¼ f ðYjX,ZÞ f ðXj jX�j,ZÞ

In SMC-FCS, for j¼ 1, . . . , p, we specify models f ðXj jX�j,Z,�j Þ, together with noninformative
priors f ð�j Þ. Then, given values of  and �j, we impute missing values in Xj from the density
proportional to

f ðYjX,Z, Þ f ðXj jX�j,Z,�j Þ ð4Þ

In general this density will not belong to a standard parametric family, complicating direct
simulation of values. In Section 6, we show how rejection sampling can be used to draw values
from it for the most common types of substantive model.

The imputation model for Xj defined by equation (4) depends both on �j and the substantive
model parameter  . Recall that at the tth iteration of the standard FCS algorithm the parameter of
the imputation model for Xj is drawn from its posterior conditional on y, xobsj , x

ðtÞ
�j, z. Under the

imputation model defined by equation (4), the posterior for ð�j, Þ conditional on y, xobsj , x
ðtÞ
�j, z is

difficult to draw from because subjects with Xj missing contribute f ðYjX�j,ZÞ to this posterior,
whose calculation requires Xj to be integrated out from f ðYjX,Z, Þ.

The posterior is however easy to draw from if we condition on (as in a standard Gibbs sampler)
x
misðt�1Þ
j in addition to y,xobsj , x

ðtÞ
�j, z. The posterior is then

f ð�j, j y, x
ðt�1Þ
j , x

ðtÞ
�j, zÞ / f ð�j, Þ f ð yjx

ðt�1Þ
j , x

ðtÞ
�j, z, Þ f ðx

ðt�1Þ
j jx

ðtÞ
�j, z,�j Þ

Assuming we specify independent priors f ð Þ and f ð�j Þ, f ð�j, Þ ¼ f ð�j Þ f ð Þ, and the posterior is
proportional to

f ð�j Þ f ð Þ f ð yjx
ðt�1Þ
j , x

ðtÞ
�j, z, Þ f ðx

ðt�1Þ
j jx

ðtÞ
�j, z,�j Þ

In SMC-FCS the tth iteration consists of drawing (up to constants of proportionality)

 ðt,j Þ � f ð Þ f ð yjxðt�1Þj , x
ðtÞ
�j, z, Þ ð5Þ
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�ðtÞj � f ð�j Þ f ðx
ðt�1Þ
j jx

ðtÞ
�j, z,�j Þ ð6Þ

and then drawing the missing values of Xj from the density proportional to (4).
In software implementations of the standard FCS algorithm, 10 iterations are typically used to

‘burn-in’, based on empirical experience suggesting this is often sufficient for convergence of the
sampler. Since when imputing missing values in Xj SMC-FCS conditions on x

misðt�1Þ
j (unlike

standard FCS), SMC-FCS might be expected to require a larger number of iterations in order to
converge to the required stationary distribution, assuming it exists. As with standard FCS,
convergence can be assessed by examining plots of means of partially observed variables by
iteration number, and also by examining the relative magnitude of between-chain variation and
within-chain variation.

5.1 Statistical properties

In the appendix, we show that under certain conditions (essentially identical to those given by
Hughes et al.20 for standard FCS), the SMC-FCS algorithm, at convergence, generates
imputations from a Bayesian joint model in which the model for YjX,Z is the same as the
substantive model f ðYjX,Z, Þ. These conditions are as follows:

(1) The covariate models f ðXj jX�j,Z,�j Þ, j ¼ 1, . . . , p, are mutually compatible, with corresponding
joint model f ðXjZ,�Þ.

(2) For each j ¼ 1, . . . , p, this joint model can be factorised as f ðXjZ,�Þ ¼
f ðXj jX�j,Z,�j Þ f ðX�jjZ,��jÞ, where ð�j,��jÞ is a reparameterisation of �, and �j and ��j are
variationally independent.

(3) There exists a prior f ð�Þ such that for each j ¼ 1, . . . , p, f ð�Þ ¼ f ð�j Þ f ð��jÞ, where f ð�j Þ is the
prior used by SMC-FCS.

As stated in Section 4.2, Hughes et al.20 have shown that these conditions are satisfied when (in our
setting) the covariate models are normal linear regressions and the usual noninformative priors are
used. When SMC-FCS is equivalent to imputation from a Bayesian joint model, and this model is
correctly specified, we expect Rubin’s rules estimator  ̂MI to be consistent and for the CIs to have
nominal coverage.

Following the results of Liu et al.13 for standard FCS, if the covariate models f ðXj jX�j,Z,�j Þ
are valid semi-compatible, we conjecture that the MI estimator of the substantive model
parameters  ̂MI will still be consistent. Just as with FCS, however, there is no guarantee however
that CIs based on Rubin’s variance estimator will give at least nominal coverage. Lastly, if
the covariate models are not valid semi-compatible, in general, we would not expect the estimator
 ̂MI to be consistent.

6 Sampling from the imputation model

In this section, we give details of how the method of rejection sampling can be used to sample from
the density given in equation (4) for some of the most common types of substantive model. Rejection
sampling involves creating draws from a proposal density (from which it is easy to draw), until a
draw is made satisfying a particular condition. We choose f ðXj jX�j,Z,�j Þ as our proposal density,
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on the assumption that it is easy to sample from this density. To use rejection sampling, the ratio of
the target density to the proposal density (up to a constant of proportionality) must be bounded
above by a quantity not involving Xj.

21 Here this ratio is proportional to

f ðYjX,Z, Þ f ðXj jX�j,Z,�j Þ

f ðXj jX�j,Z,�j Þ
¼ f ðYjXj,X�j,Z, Þ ð7Þ

Let cðY,X�j,Z, Þ denote an upper bound (in Xj) for f ðYjXj,X�j,Z, Þ. To generate a draw from the
density proportional to equation (4), we sample pairs of values X�j from the density given by
f ðXj jX�j,Z,�j Þ and U from the uniform distribution on (0,1) until

U �
f ðYjX�j ,X�j,Z, Þ

cðY,X�j,Z, Þ
ð8Þ

When this inequality is satisfied, the value X�j is a draw from the density proportional to
equation (4).

We must therefore bound f ðYjXj,X�j,Z, Þ by a quantity not involving Xj. The bound will
depend on the specification of the substantive model. In the following sections, we derive bounds
for the cases of (i) a normal regression model, (ii) a model for a discrete outcome Y and (iii) a
proportional hazards survival model.

6.1 Normal regression

Suppose that the substantive model specifies that Y is normal, with conditional
mean EðYjXÞ ¼ gðXj,X�j,Z,�Þ for some function g(), and residual variance �2� , so that
 ¼ ð�, �2� Þ. Then

f ðYjXj,X�j,Z, Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2��2�

p expð�ðY� gðXj,X�j,Z,�ÞÞ
2=2�2� Þ

�
1ffiffiffiffiffiffiffiffiffiffi
2��2�

p
To generate a draw for the missing value Xj, we draw a value X�j from f ðXj jX�j,Z,�j Þ, and U from
the uniform distribution on (0, 1). The draw X�j is accepted if

U � f ðYjX�j ,X�j,Z, Þ
ffiffiffiffiffiffiffiffiffiffi
2��2�

q
¼ expð�ðY� gðX�j ,X�j,Z,�ÞÞ

2=2�2� Þ
ð9Þ

If the draw is not accepted, new draws of X�j and U are made until they satisfy the condition in
equation (9).

6.2 Discrete outcomes

Now consider a discrete outcome Y. This includes the case of a binary outcome Y, which is
commonly modelled using logistic regression. When Y is discrete, f ðYjXj,X�j,Z, Þ is a
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probability, and hence is less than or equal to one. The rejection sampling algorithm then consists of
drawing X�j from f ðXj jX�j,Z,�j Þ and U � Uð0, 1Þ, and accepting X�j when

U � f ðYjX�j ,X�j,Z, Þ

6.3 Proportional hazards models

Lastly, suppose that interest lies in the time T to an event of interest, but this time may be censored.
Let C denote the censoring time. We observe W¼min(T, C), and D ¼ 1ðT5CÞ, which denotes
whether the subject’s event time has been observed or was censored. We assume that censoring is
noninformative, in the sense that T?CjX,Z. Furthermore, we assume C?XjZ. Together these
assumptions allow us to avoid modelling the censoring process.22

We assume that the substantive model is the proportional hazards model:

hðtjXÞ ¼ h0ðtÞ expð gðXj,X�j,Z,�ÞÞ ð10Þ

where hðtjXÞ denotes the hazard at time t, h0(t) denotes the baseline hazard at time t and
gðXj,X�j,Z,�Þ denotes a function of X and Z indexed by parameter �. In parametric
proportional hazards models the baseline hazard function is parametrised by a finite set of
parameters 	, so that  ¼ ð�, 	Þ. In Cox’s proportional hazards model the baseline hazard is
allowed to be arbitrary, so that  ¼ ð�, h0ð�ÞÞ with h0ð�Þ an infinite-dimensional parameter.
Equivalently, we can parametrise the model using the baseline cumulative hazard
H0ðtÞ ¼

R t
0 h0ðsÞds, so that  ¼ ð�,H0ð�ÞÞ.

We first consider how to sample Xj for a subject for whom D¼ 0, that is, their time to event is
censored. Then since by assumption T?CjX,Z and C?XjZ

f ðW ¼ t,D ¼ 0jXj,X�j,Z, Þ ¼ f ðT4 t,C ¼ tjXj,X�j,Z, Þ

¼ PðT4 tjXj,X�j,Z, Þ f ðC ¼ tjXj,X�j,ZÞ

¼ PðT4 tjXj,X�j,Z, Þ f ðC ¼ tjZÞ

� f ðC ¼ tjZÞ

We draw X�j from f ðXj jX�j,Z,�j Þ and U � Uð0, 1Þ, and accept X�j when

U �
f ðW ¼ t,D ¼ 0jX�j ,X�j,Z, Þ

f ðC ¼ tjZÞ

¼ PðT4 tjX�j ,X�j,Z, Þ

¼ expð�H0ðtÞe
gðX�j ,X�j,Z, �ÞÞ

For a subject who is not censored (D¼ 1), we have

f ðW ¼ t,D ¼ 1jXj,X�j,Z, Þ ¼ PðC4 tjXj,X�j,ZÞhðtjXj,X�j,Z, ÞPðT4 tjXj,X�j,Z, Þ

¼ PðC4 tjZÞh0ðtÞ expð gðXj,X�j,Z,�Þ �H0ðtÞe
gðXj,X�j,Z, �ÞÞ
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Since expðÞ is monotonically increasing, this expression takes its maximum when
gðXj,X�j,�Þ �H0ðtÞe

gðXj,X�j, �Þ takes its maximum. Differentiating this with respect to g()
and setting the resulting expression to zero shows that this occurs when H0ðtÞe

gðXj,X�j, �Þ ¼ 1.
Therefore

f ðW ¼ t,D ¼ 1jXj,X�j,Z, Þ � PðC4 tjZÞ
h0ðtÞe

�1

H0ðtÞ

We can thus draw X�j from f ðXj jX�j,Z,�j Þ and U � Uð0, 1Þ, and accept X�j when

U �
f ðW ¼ t,D ¼ 1jX�j ,X�j,Z, Þ

PðC4 tjZÞ h0ðtÞe
�1

H0ðtÞ

¼ expð1þ gðX�j ,X�j,Z,�Þ �H0ðtÞe
gðX�j ,X�j,Z, �ÞÞH0ðtÞ

7 Simulation study

In this section, we describe the results of simulation studies to investigate the performance SMC-
FCS in situations in which the substantive model is incompatible with standard choices for covariate
imputation models.

7.1 Linear regression with quadratic covariate effects

We first simulated from a linear regression substantive model with a single covariate X with linear
and quadratic effects, for which standard imputation model choices for the covariate X are
incompatible.

7.1.1 Simulation setup

The outcome Y was simulated according to

Y ¼ �0 þ �1Xþ �2X
2 þ �

with �0¼ 4, �1 ¼ �4, �2¼ 1 and ��
iid
Nð0, �2� Þ. These coefficients were chosen to give a moderately

strong U-shaped association between Y and X. The variance �2� was chosen such that the coefficient
of determination R2 was equal to 0.5.

The covariate X was simulated from a normal, a log-normal or a normal mixture distribution.
For all three distributions X had mean 2 and variance 1. For the log-normal distribution, X was
generated by exponentiating a draw from Nðlogð

ffiffiffiffiffiffiffi
3:2
p
Þ, logð5=4ÞÞ. For the normal mixture

distribution, X was drawn from N(1.125,0.234) with probability 0.5 and from N(2.875,0.234) with
probability 0.5.

For each distribution of X, values were made missing either according to the missing
completely at random (MCAR) mechanism PðR ¼ 1jX,YÞ ¼ 0:7 or the MAR mechanism
PðR ¼ 1jX,YÞ ¼ expitð
0 þ 
1YÞ, where expitðaÞ ¼ ð1þ expð�aÞÞ�1, 
1 ¼ �1=SDðYÞ and 
0
was chosen to make the marginal probability of observing X equal to 0.7. In all simulations
datasets for n¼ 1000 subjects were generated and 1000 simulations were performed for each
scenario.
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7.1.2 Estimation methods

For each simulated dataset we first imputed the missing values of X using a linear regression model
with the ice command in Stata. We used the default imputation model, with the expectation of X
modelled as a linear function of Y. Note that since here there is only one partially observed variable,
no iteration is required within FCS. Missing values of X2 were then passively imputed as the square
of these imputed values of X (‘linear passive’). Second, we imputed the missing X values using the
‘transform then impute’ or ‘just another variable’ (JAV) approach proposed by von Hippel,15 that is,
by treating X2 as another variable to be imputed in the ice command in Stata. Third, we imputed X
using the mice.impute.quadratic function in the R MICE package (‘polynomial combination’).
This implements a method recently proposed by van Buuren23 (p. 140), which imputes the linear
combination of X and X2 which enters in the linear predictor of the substantive model, followed by
solving a quadratic equation for X. Lastly, we used SMC-FCS, assuming X is marginally normally
distributed for all scenarios. We chose to implement SMC-FCS using the same marginal model for X
to explore the performance of (substantive model) compatible but mis-specified imputation models.
For all imputation approaches, 10 imputed datasets were generated, and estimates and CIs found
using Rubin’s rules. We used 10 iterations per imputation in SMC-FCS and the default 10 iterations
in the ice command. With X univariate, SMC-FCS is equivalent to imputation from the
corresponding Bayesian model. We used standard noninformative priors for normal linear
regression parameters in SMC-FCS, that is, f ð�, �2Þ / 1=�2, where � and �2 denote the vector of
regression coefficients and residual variance, respectively.

7.1.3 Results

Table 2 shows the results of the simulations, showing the empirical mean and standard deviation of
estimates of �2 and the coverage of nominal 95% CIs. With normally distributed X and MCAR,
linear passive imputation resulted in biased estimates, with considerable attenuation in �̂2 towards
zero as expected. Here the imputation model being used is incompatible (with the substantive model)
and mis-specified. CI coverage for linear passive imputation was also extremely poor, with zero

Table 2. Simulation results – linear regression with quadratic covariate effects. Empirical mean (SD) of estimates of

quadratic coefficient �2¼ 1 from 1000 simulations, using linear passive imputation, JAV imputation, the polynomial

combination method and SMC-FCS. Empirical coverage of nominal 95% confidence intervals is also shown (Cov).

Monte-Carlo errors for means and SDs are less than 0.003, except for log-normal X MAR, where Monte-Carlo errors

for means and SDs are less than 0.02. Monte-Carlo errors for confidence interval coverage are less than 1.6%.

Scenario

Linear passive JAV

Polynomial

comb. SMC-FCS

Mean (SD) Cov Mean (SD) Cov Mean (SD) Cov Mean (SD) Cov

X MCAR

Normal X 0.696 (0.041) 0.0 1.001 (0.041) 91.9 1.005 (0.040) 91.5 0.998 (0.038) 93.9

Log-normal X 0.789 (0.084) 16.7 1.012 (0.100) 82.6 1.025 (0.097) 83.1 1.000 (0.059) 96.2

X mixture of normals 0.493 (0.036) 0.0 0.997 (0.036) 94.7 1.003 (0.034) 95.8 0.942 (0.036) 65.9

X MAR

Normal X 0.618 (0.045) 0.0 1.192 (0.073) 12.3 1.045 (0.069) 75.9 0.995 (0.049) 94.4

Log-normal X 0.790 (0.265) 58.6 1.488 (0.324) 25.7 1.288 (0.179) 27.6 1.002 (0.158) 91.7

X mixture of normals 0.450 (0.033) 0.0 1.085 (0.047) 48.1 1.009 (0.048) 87.8 0.840 (0.038) 3.4

JAV: just another variable; MCAR: missing completely at random; MAR: missing at random.
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coverage for �2. JAV, polynomial combination and SMC-FCS gave unbiased results, with similar
efficiency to each other. SMC-FCS had CI coverage close to 95%, but JAV and polynomial
combination had slightly low coverage. With X log-normally distributed and MCAR linear
passive imputation was again biased with poor CI coverage. JAV was unbiased, although
estimates were considerably more variable SMC-FCS. Furthermore, the coverage of the CI for �2
from JAV was only 83%. The polynomial combination method performed similar to JAV here.
Despite the assumed model for X being mis-specified, SMC-FCS was unbiased and the 95% CI for
�2 had the correct coverage. With X distributed according to a normal mixture model and MCAR,
JAV and polynomial combination were again unbiased. The CI coverage of JAV and polynomial
combination for �2 was close to 95%. Linear passive imputation continued to be severely biased.
SMC-FCS was somewhat biased towards the null for �2, and consequently CI coverage for �2 was
only 66%.

With normal X and MAR, linear passive imputation gave biased estimates and the CI for �2 had
zero coverage. With data MAR, JAV no longer gave unbiased estimates, in agreement with the
findings of Seaman et al.,10 and the CI for �2 had only 12% coverage. Polynomial combination had
only slight bias, but CI coverage for �2 was only 75.9%. In contrast, SMC-FCS was unbiased and
the CI for �2 had approximately 95% coverage. All estimators were considerably more variable with
X log-normal MAR. JAV and polynomial combination had considerable bias and poor CI coverage
for �2, as did linear passive imputation. Despite using a mis-specified model for the distribution of X,
SMC-FCS was again unbiased, although the CI for �2 had slightly lower than nominal coverage.
Lastly with X distributed as a mixture of two normals and MAR, linear passive imputation
continued to be substantially biased. JAV was biased to a lesser extent, although its CI for �2
had poor coverage. SMC-FCS was biased (since the assumed distribution for X was incorrect)
towards zero, and its CI for �2 had extremely poor coverage, due to the estimator’s large bias
relative to its variability. The polynomial combination method performed best here, with
unbiased estimates of �2 and only somewhat reduced CI coverage.

7.2 Linear regression with interaction

Next, we considered a linear regression substantive model in which two covariates interact with each
other in their effect on outcome.

7.2.1 Simulation setup

The outcome Y was generated according to

Y ¼ �0 þ �1X1 þ �2X2 þ �3X1X2 þ �

with �0¼ 0, �1¼ 1, �2¼ 1, �3¼ 1, and with ��
iid
Nð0, �2� Þ, where as before, �2� was chosen to give

R2
¼ 0.5.
In the first scenario, X1 and X2 were generated from a bivariate normal distribution, with each

covariate having mean 2 and variance 1, and the correlation between the two equal to 0.5. To
explore robustness of the imputation methods to violations of normality assumptions, in a second
scenario logðX1Þ and logðX2Þ were generated from a bivariate normal distribution so that they both
had marginal distribution Nðlogð

ffiffiffiffiffiffiffi
3:2
p
Þ, log 5=4Þ and the correlation between the two was equal to

0.5. To investigate robustness to linearity assumptions between covariates, in a third scenario we
generated X1 � Nð2, 1Þ and X2jX1 � NððX1 � 2Þ2, 2Þ. Fourth, we generated X1 from a Bernoulli
distribution with probability 0.5, and X2jX1 � NðX1, 1Þ. To explore robustness to violations of
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normality assumptions, in the final scenario we generated X1 from a Bernoulli distribution with
probability 0.5 and X2 ¼ X1 þ expðvÞ where v � Nðlogð

ffiffiffiffiffiffiffi
3:2
p
Þ, logð5=4ÞÞ.

Values in both X1 and X2 were first made (independently) MCAR, each with probability 0.7 of
being observed. We then repeated the simulations with X1 observed with probability expitð
0 þ 
1YÞ
where 
1 ¼ �1=SDðYÞ and 
0 was chosen to make the marginal probability of observing X1 equal to
0.7, and with X2 also observed with probability expitð
0 þ 
1YÞ.

7.2.2 Estimation methods

For each simulated dataset we first imputed using the ice command in Stata, followed by passive
imputation of the interaction term (‘passive FCS’). A linear regression imputation model was used
when the covariate was continuous and a logistic regression imputation model when the covariate
was binary. In the imputation model for X1 (X2) the outcome Y, X2 (X1) and their interaction YX2

(YX1) were included as explanatory variables.
We obtained estimates using JAV by including the interaction variable X1X2 as an additional

variable in the ice command. Covariate X1 (X2) was imputed using a linear regression model (even
when X1 was binary) with Y, X2 (X1) and X1X2 as explanatory variables. The interaction term X1X2

was imputed using a linear regression model with Y, X1 and X2 as explanatory variables. Since all
conditional imputation models are linear regressions with other variables included linearly, JAV is
equivalent here to imputation from a trivariate normal imputation model for (X1,X2,X1X2)
conditional on Y.

Lastly, we obtained estimates using SMC-FCS, assuming a normal regression model for X1jX2 or
a logistic regression model when X1 was binary. A linear regression model was assumed for X2jX1.
When assuming X1jX2 and X2jX1 are linear regressions, SMC-FCS is equivalent to imputation from
the Bayesian model defined by the substantive model and a bivariate normal model for (X1,X2). In
contrast, when assuming a logistic regression model for X1jX2 and a linear regression for X2jX1,
although these models are compatible, SMC-FCS is not equivalent to imputation from a Bayesian
model. When drawing from the posterior of the logistic regression parameters (equation (5)) we used
a multivariate normal, with mean equal to the MLE and variance covariance corresponding to the
inverse of the ‘observed’ data information matrix.

7.2.3 Results

Table 3 shows the mean (SD) estimates of �1 and �3 and empirical coverage of the corresponding
95% CIs. With data MCAR and X1 and X2 bivariate normal, passive FCS was substantially biased
and had poor CI coverage for �1 and �3. In contrast, both JAV and SMC-FCS were unbiased.
However, SMC-FCS was somewhat more efficient than JAV. CI coverage for �3 was at the nominal
level for both JAV and SMC-FCS. With X1 and X2 distributed log-normal, passive FCS had slightly
larger bias for �1 and �3 and again poor CI coverage. JAV continued to be unbiased with correct CI
coverage. SMC-FCS was somewhat biased, due to mis-specification of the models for X1jX2 and
X2jX1, although CI coverage was only slightly below the nominal level for �1 and �3. When X2 was
normally distributed with mean a quadratic in X1, passive FCS was again biased. JAV continued to
be approximately unbiased. SMC-FCS was again somewhat biased, with CI coverage for �3
approximately 88%. With X1 Bernoulli and X2jX1 normal, both JAV and SMC-FCS were
unbiased, although SMC-FCS was slightly more efficient. Both had empirical CI coverage of
approximately 95% for both �1 and �3. It is important to note that here SMC-FCS is not
equivalent to imputation a Bayesian model, and thus there is no guarantee that Rubin’s rules will
give asymptotically unbiased variance estimates. That the CIs from SMC-FCS had the correct
coverage in this setting is thus encouraging. Passive FCS was again biased. As expected, with X2
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log-normal given X1 JAV continued to remain approximately unbiased while SMC-FCS had
moderately large biases for �1 and �3, although CI coverage was only slightly below 95%.

When X1 and X2 were MAR passive FCS continued to be biased for all X1,X2 distributions
considered. With X1,X2 bivariate normal, estimates from JAV had a small bias towards zero for
�3, but a larger bias for �1. In contrast, SMC-FCS was unbiased and more efficient. In a number of
simulated datasets with covariates log-normally distributed or with X2 quadratic given X1 the FCS
algorithm created imputed datasets with extremely large imputed values of X1 and X2, resulting in a
co-linearity error when attempting to fit the substantive model to the imputations. Consequently, for
these scenarios results are shown for the subset of the simulated datasets for which estimates from all
methods were obtained. JAV was approximately unbiased for �3 when the covariates were log-
normally distributed, but was substantially biased for �1. SMC-FCS was approximately unbiased
here. With X2 given X1 normal with mean quadratic in X1, both JAV and SMC-FCS were biased,
but again biases for �1 and �3 were smaller for SMC-FCS. Lastly, with X1 binary and X2 either
conditionally normal or log-normal, JAV had little bias for �3, but had some bias for �1. SMC-FCS
was unbiased for both �1 and �3 when X2 was conditionally normal given X1. With X2 log-normally

Table 3. Simulation results – linear regression with interaction. Empirical mean (SD) of estimates of �1¼ 1 and

�3¼ 1 from 1000 simulations, standard FCS with passive imputation (Passive FCS), JAV imputation and SMC-FCS.

Empirical coverage of nominal 95% confidence intervals is also shown (Cov). Monte-Carlo errors for means and SDs

are all less than 0.04 for �1 and less than 0.02 for �3. Monte-Carlo errors for confidence interval coverage are less

than 1.6%.

Passive FCS JAV SMC-FCS

X1,X2 distribution Parameter Mean (SD) Cov Mean (SD) Cov Mean (SD) Cov

MCAR

X1,X2 bivariate normal �1 1.50 (0.39) 82.7 1.02 (0.53) 94.5 0.99 (0.45) 95.4

�3 0.74 (0.14) 75.1 1.00 (0.23) 95.2 1.01 (0.19) 95.4

X1,X2 bivariate log-normal �1 1.70 (0.57) 72.4 1.03 (0.61) 95.1 0.81 (0.56) 92.7

�3 0.69 (0.23) 64.5 1.00 (0.23) 94.8 1.08 (0.22) 92.1

X1 normal, X2jX1 � NððX1 � 2Þ2,2Þ �1 2.20 (0.65) 36.6 1.03 (0.50) 95.3 1.09 (0.52) 93.0

�3 0.70 (0.27) 57.6 1.00 (0.13) 94.6 1.09 (0.14) 87.9

X1 Bernoulli, X2jX1 normal �1 1.11 (0.21) 91.8 1.00 (0.23) 95.3 0.99 (0.22) 95.0

�3 0.80 (0.15) 80.7 0.99 (0.20) 95.3 0.99 (0.17) 94.6

X1 Bernoulli, X2jX1 log-normal* �1 1.74 (0.63) 78.3 1.01 (0.74) 95.1 1.28 (0.65) 92.1

�3 0.71 (0.24) 78.4 0.98 (0.28) 94.5 0.89 (0.24) 92.0

MAR

X1,X2 bivariate normal �1 1.63 (0.37) 78.6 1.31 (0.60) 91.1 1.03 (0.46) 95.5

�3 0.64 (0.12) 56.2 0.96 (0.30) 94.0 0.97 (0.19) 95.3

X1,X2 bivariate log-normal* �1 2.53 (0.95) 45.5 1.57 (1.17) 91.7 1.02 (0.93) 94.9

�3 0.16 (0.35) 30.0 1.06 (0.57) 95.0 1.00 (0.45) 92.2

X1 normal, X2jX1 � NððX1 � 2Þ2,2Þ** �1 2.39 (1.33) 41.9 1.68 (0.63) 81.1 1.29 (0.54) 94.8

�3 0.13 (0.28) 24.3 1.17 (0.20) 84.3 1.10 (0.20) 90.7

X1 Bernoulli, X2jX1 normal �1 1.11 (0.21) 92.2 1.14 (0.22) 88.4 1.00 (0.22) 95.0

�3 0.78 (0.15) 81.6 0.97 (0.22) 95.3 0.98 (0.17) 95.6

X1 Bernoulli, X2jX1 log-normal �1 1.84 (0.74) 85.1 1.11 (0.99) 95.1 1.24 (0.77) 93.1

�3 0.68 (0.28) 84.6 0.96 (0.38) 94.8 0.91 (0.28) 92.9

Results based on * 999, ** 968 simulations

FCS: fully conditional specification; JAV: just another variable; SMC-FCS: substantive model compatible-fully conditional specification;

MCAR: missing completely at random; MAR: missing at random.
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distributed, both JAV and SMC-FCS were somewhat biased for �1 and �3, although the biases of
JAV were smaller.

7.3 Cox proportional hazards models

Lastly, we performed simulations for imputing missing covariates with a Cox proportional hazards
model. Recently, White and Royston16 derived approximate results to inform the choice of
imputation model in this context. They recommended including the event indicator and the
Nelson–Aalen estimate of the marginal cumulative hazard function as covariates in imputation
models. Their simulation results showed that this approach generally worked well for imputing
normally distributed covariates, except when the covariate effects were large, when some
attenuation towards the null occurred.

7.3.1 Simulation setup

Survival times were simulated with hazard function hðtjXÞ ¼ 0:002 expð�1X1 þ �2X2Þ with
� ¼ ð�1,�2Þ ¼ ð1, 1Þ. Censoring times were generated from an exponential distribution with
hazard 0.002. We simulated X1 from a Bernoulli distribution with probability 0.5, and
X2jX1 � NðX1, 1Þ. Values in X1 and X2 were made (independently) MCAR, with probability of
observation 0.7. We performed simulations with n¼ 1000 subjects and also with n¼ 100 subjects.

7.3.2 Estimation methods

For each simulated dataset we first estimated � by fitting the Cox proportional hazards model to the
complete cases (CC). Next, we multiply imputed the missing values in X1 and X2 using FCS (10
imputations). A linear regression imputation model was used for X2 and a logistic regression model
for X1. Following the recommendations of White and Royston,16 we included the event indicator D
and the Nelson–Aalen estimate of the marginal cumulative hazard as covariates in both imputation
models (FCS). Lastly, we estimated � using SMC-FCS as described in Section 6.3, assuming a
logistic regression model for X1jX2 and a linear regression model for X2jX1. As described
previously, the SMC-FCS algorithm involves taking draws from the posterior distribution of the
parameter  in the substantive model. For Cox’s proportional hazards model  ¼ ð�,H0ð�ÞÞ, where
H0(�) is an infinite-dimensional parameter representing the arbitrary baseline hazard function. It is
unclear how a draw can be made from the posterior distribution of H0(�), and indeed whether
Rubin’s rules can be expected to give asymptotically unbiased variance estimates in a semi-
parametric model. In our simulation study we allowed for uncertainty in � by drawing a new
value from a (bivariate) normal distribution with mean equal to the current estimate of � and
with covariance matrix based on the usual ‘observed’ data information matrix. We then updated
H0(�) using the usual Breslow estimator, conditioning on the newly drawn value of �.

7.3.3 Results

Table 4 shows the results from the 1000 simulations. CC is consistent here, since missingness is
completely at random. However, with n¼ 100 CC showed some upward finite sample bias for
both �1 and �2. In accordance with the results of White and Royston,16 FCS resulted in
somewhat biased estimates, with the bias larger for the coefficient corresponding to the
continuous covariate, although CI coverage for both �1 and �2 was approximately 95%. SMC-
FCS, like CC, showed some slight upward bias, but was somewhat more efficient. Of interest was
that the CIs had correct coverage, despite the fact that our implementation ignores uncertainty in the
baseline hazard function.
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For n¼ 1000, CC was essentially unbiased. The biases of FCS were larger than for n¼ 100, which
is due to the fact that the finite sample bias, which acted in the opposite direction to the bias caused
by the approximation used in the FCS approach, had largely disappeared. Consequently, CI
coverage was below the nominal 95% level, with coverage for �2 particularly poor at 47%.
In contrast, SMC-FCS was unbiased and had correct CI coverage.

8 Analysis of data from ADNI

Table 5 shows the estimated log hazard ratios from the substantive model fitted to the n¼ 127
complete cases (of whom 61 converted to AD). This showed borderline evidence of an
association between CSF A�1�42 and hazard of conversion, and borderline significant evidence of
curvature in the association, in agreement with the findings of Jack et al.11 The estimated association
suggests that increasing A�1�42 is associated with increased hazard of conversion up until a value of
� 14 ng/mL, after which hazard decreases. There was evidence that increased levels of p-tau were
associated with increased hazard of conversion. Contrary to what we expected, having a mother or
father with AD was suggestive of lower hazard of conversion to AD, although neither coefficient was
statistically significant. Hippocampal volume was the strongest predictor of hazard (measured by
statistical significance), with larger volumes associated with lower hazard of conversion. This is
consistent with the findings of previous studies which have found that the hippocampus is one of
the earliest structures of the brain to undergo atrophy during AD.

Next, we used FCS MI to impute the partially observed baseline variables. 50 imputations were
used. Continuous variables were imputed using linear regression models while binary variables were
imputed using logistic regressions. To incorporate the censored time to conversion outcome we
followed the recommendations of White and Royston16 and included the event indicator and
marginal Nelson–Aalen cumulative hazard function as covariates in the imputation models. We
passively imputed the A�21�42 term in the imputed datasets. The FCS estimate of A�21�42 is smaller in
magnitude than the CC estimate (Table 5). This is consistent with the simulation results of Section
7.1, which showed that linear imputation of variables for substantive models which include
quadratic effects of the variable leads to attenuation in the estimate of curvature. The coefficient
for the linear A�1�42 term is also much smaller and no longer statistically significant. The estimated

Table 4. Cox proportional hazards outcome model simulation results. Empirical mean (SD) of estimates of �1¼ 1

and �2¼ 1 from 1000 simulations, using complete case analysis, MI of X1 and X2 using FCS with the event indicator

and Nelson–Aalen marginal baseline cumulative hazard function as covariates (FCS), and SMC-FCS. Empirical

coverage of nominal 95% confidence intervals is also shown (Cov). Monte-Carlo errors in means and SDs are

no more than 0.02 for n¼ 100 and 0.005 for n¼ 1000.

Parameter

Complete case FCS SMC-FCS

Mean (SD) Cov Mean (SD) Cov Mean (SD) Cov

n¼ 100

�1¼ 1 1.04 (0.47) 95.6 0.94 (0.36) 96.5 1.02 (0.41) 94.7

�2¼ 1 1.05 (0.26) 95.6 0.89 (0.17) 94.0 1.05 (0.21) 94.8

n¼ 1,000

�1¼ 1 1.000 (0.129) 95.2 0.902 (0.107) 89.1 1.002 (0.114) 95.0

�2¼ 1 1.007 (0.070) 94.8 0.861 (0.049) 45.7 1.006 (0.058) 95.1

FCS: fully conditional specification; SMC-FCS: substantive model compatible-fully conditional specification.
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coefficient for p-tau is much smaller. The negative association between hippocampal volume and
hazard of conversion remained. The coefficients for family history of AD changed by a
proportionately large amount. Further investigation revealed that the dependence of hazard of
conversion to AD on family history of AD varied (in a model without the CSF variables)
according to whether or not the CSF variables were measured. This means that the assumption
required for validity of complete case analysis failed for the reduced model without the CSF
variables, and this is the likely cause of the large change in the coefficients for family history of
AD. Standard errors were considerably smaller, consistent with the gain in information through
inclusion of subjects with some missing values into the analysis.

Lastly, we imputed using SMC-FCS, again using 50 imputations, with 10 iterations per
imputation. Here we assumed linear regression covariate models for partially observed
continuous variables and logistic regressions for partially observed binary variables. Comparing
the estimates from SMC-FCS with complete case and passive FCS, we see that the linear and
quadratic coefficients of A�1�42 are much closer to the complete case estimates, with the
statistical significance of the quadratic coefficient preserved (Table 5). The estimated coefficient
for p-tau is similar to that obtained in the FCS analysis. For the other coefficients the SMC-FCS
estimates and CIs are similar to those from FCS. In conclusion, consistent with our earlier
simulation results, the results of this analysis suggest that ignoring the quadratic association at
the imputation stage leads to attenuation in the corresponding coefficient. In contrast, imputation
of the partially observed covariates using SMC-FCS preserved a quadratic association between CSF
A�1�42 seen in the complete cases. Furthermore, use of MI has here led to practically important
improvements in the precision of estimated associations, compared to CC.

9 MI of covariates in practice

Our developments thus far have assumed that at the imputation stage we have a single correctly
specified substantive model f ðYjX,Z, Þ. Usually, we will not know in advance of analysing the data
what is an appropriate model for the outcome Y of interest given the covariates. One of the apparent
advantages of using MI is that once a set of imputed datasets have been generated, a number of
different substantive models can be fitted and compared. It is important to note that the validity of
estimates from different models fitted to a set of MIs depends on whether the imputation model is

Table 5. Estimates of log hazard ratios (standard errors) for Cox proportional hazards model relating hazard of

conversion to AD to baseline risk factors. Estimates based on complete case, FCS imputation and SMC-FCS.

(n¼ 127) (n¼ 382)

Variable Complete case FCS SMC-FCS

A�1�42 (ng/mL) 0.31 (0.19) 0.08 (0.10) 0.28 (0.16)

A�2
1�42 (ng2/mL2) �0.011 (0.005) �0.004 (0.003) �0.010 (0.005)

log(tau) (log pg/mL) �0.60 (0.47) �0.23 (0.37) �0.19 (0.36)

log(p-tau) (log pg/mL) 1.29 (0.51) 0.52 (0.38) 0.44 (0.40)

Mother had AD �0.61 (0.32) �0.15 (0.22) �0.14 (0.21)

Father had AD �1.07 (0.68) �0.22 (0.35) �0.28 (0.34)

Intracranial volume (cm3) 0.0005 (0.0010) 0.0010 (0.0007) 0.0011 (0.0007)

Hippocampal volume (cm3) �0.64 (0.17) �0.47 (0.10) �0.51 (0.10)

APOE4 positive �0.06 (0.30) 0.31 (0.22) 0.41 (0.20)

FCS: fully conditional specification; SMC–FCS: substantive model compatible-fully conditional specification.
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correctly specified. In practice, all imputation models are likely to be mis-specified to some extent,
but biases may be small provided imputation models preserve those features of the data which are
subsequently investigated. It is arguably therefore unrealistic in practice to expect a single set of
multiply imputed datasets to be suitable for all possible subsequent types of analysis.

Performing model selection in combination with MI is a challenging problem generally,24 and
therefore deciding on what substantive model to specify when using the SMC-FCS algorithm is not
a trivial process. One possible approach would be to use the complete cases to select the
substantive model. Alternatively, the SMC-FCS algorithm could be used to impute the partially
observed covariates assuming a rich model for f ðYjX,Z, Þ which contains as special cases various
simpler models that one may wish to fit to the imputed datasets. This approach would mean
the imputation models used would be compatible with this larger model, and semi-compatible
with those substantive models nested within it. This advice follows that given by others (e.g.
Meng6 and Schafer7) for application of MI in general, whereby imputation models are used
which are rich and do not impose assumptions which are subsequently to be relaxed in
substantive models. For example, if one believes that two covariates may interact in their effect
on Y, one could impute compatibly with a model f ðYjX,Z, Þ which includes the corresponding
interaction.

We do not consider the requirement to specify a substantive model at the imputation stage to be a
shortcoming of the SMC-FCS approach, since the issue of compatibility between imputation and
substantive models is similarly present when one imputes using standard FCS MI. Indeed, whereas
SMC-FCS forces the analyst to consider the issue of compatibility between these models, if using
standard FCS MI one may unwittingly specify covariate imputation models which are incompatible
with one’s substantive model.

As noted in Section 1, in many settings auxiliary variables V may be available, which although
not involved in the substantive model, may be useful for inclusion in imputation models in order to
improve efficiency (by virtue of their association with variables being imputed) or to increase the
plausibility of the MAR assumption. The notion of compatibility between imputation and
substantive models does not then apply, since the two models involve different sets of variables.
However, one could include the auxiliary variables V as additional covariates in the model for Y in
the SMC-FCS algorithm, following which models for Y can be fitted using the imputed datasets
which omit V.

10 Discussion

MI is an attractive approach for handling missingness in covariates of regression models. When the
substantive model contains non-linearities or interactions, existing imputation approaches using
the FCS algorithm may give biased estimates because the imputation models are incompatible
with the substantive model. Our proposed modification of the popular FCS approach to MI
ensures that each covariate is imputed from a model which is compatible with the substantive
model. Although compatibility does not guarantee the imputation models are correctly specified,
it ensures that the imputation and substantive models do not make conflicting assumptions which
may induce bias in parameter estimates. In our simulations across a range of settings we found
SMC-FCS to generally outperform existing alternative imputation approaches.

In special cases, SMC-FCS is equivalent to imputation from a Bayesian joint model, and thus
inherits the latter’s statistical properties. More generally, if the covariate models used in SMC-FCS
are valid semi-compatible, we conjecture that the resulting estimator is consistent, which
is supported by our simulation results. Further, in these cases CI coverage for estimates from
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SMC-FCS attained nominal coverage, despite the lack of equivalence to imputation from a Bayesian
joint model. In simulations in which the covariate models were mis-specified, estimates from SMC-
FCS were still less biased than those from what might be considered ‘standard FCS’.

For linear substantive models which contain non-linear covariate effects or interactions, the
‘JAV’ approach is attractive, and is consistent if data are MCAR. This holds irrespective of the
joint distribution of the outcome and covariates. However when data are MAR, or for other
substantive model types such as logistic regression, we and Seaman et al.10 have shown that JAV
gives biased estimates. At least in our limited simulation study, the polynomial combination method
recently proposed by van Buuren23 was superior to JAV, with less bias and coverage closer to the
nominal level. A limitation of this approach however is that it only applies to imputation of
covariates which have a quadratic association with outcome, and it is unclear whether it can be
generalised to substantive models other than linear regression.

Relative to standard FCS MI, SMC-FCS is more computationally intensive because of the use of
rejection sampling to sample from the required densities. For example, the SMC-FCS algorithm
took six times longer than standard FCS to create 10 imputations for a simulated dataset from the
first simulation scenario (linear regression with quadratic covariate effects). The acceptance rate of
the rejection sampler will be low when the target density f ðXj jX�j,Z,YÞ differs substantially from
the candidate density f ðXj jX�j,ZÞ. This will occur if a subject has an outcome value Y which is
unlikely to have occurred given the values of X�j and Z. However, our experience thus far in
simulation studies has been that this has not been an issue. Furthermore, as for standard FCS
MI, additional work is needed to understand the statistical properties of the SMC-FCS
algorithm. In some settings, substantive models may be fitted to imputed datasets for a number
of different outcomes, and a limitation of our approach is that imputation models are defined with
respect to a single (possibly multivariate) outcome variable.

We note that compatibility between imputation and substantive models is closely related to the
concept of congeniality defined by Meng.6 We chose not to adopt this term because Meng’s
definition of congeniality depends additionally on specification of incomplete and complete data
‘procedures’ which give asymptotically equivalent inferences to those under a Bayesian model.
Further, in many cases SMC-FCS is not equivalent to imputation from a joint model, and so
would not satisfy Meng’s definition of congeniality, which assumes imputation is from a well-
defined Bayesian joint model. Lastly, the setup adopted by Meng assumed that covariates are
fully observed.

In this article, we have assumed that the outcome is fully observed. In the absence of auxiliary
variables subjects with missing outcome provide little or no additional information regarding the
substantive model parameters,25 such that imputation of missing outcomes may not be beneficial.
Nevertheless, the SMC-FCS algorithm can be readily extended to impute missing outcome values by
imputing from the assumed substantive model.

A Stata program implementing SMC-FCS for linear, logistic and Cox proportional hazards
models of interest is available for free download from www.missingdata.org.uk.

Acknowledgements

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug

Administration (FDA), private pharmaceutical companies and nonprofit organisations, as a $60 million,

484 Statistical Methods in Medical Research 24(4)



5-year public–private partnership. The primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild cognitive impairment

(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early AD

progression is intended to aid researchers and clinicians to develop new treatments and monitor their

effectiveness, as well as lessen the time and cost of clinical trials. A complete listing of ADNI investigators

can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_

List.pdf

The Principal Investigator of this initiative is Michael WWeiner, MD, VAMedical Center and University of

California San Francisco. ADNI is the result of efforts of many co-investigators from a broad range of

academic institutions and private corporations, and subjects have been recruited from over 50 sites across

the US and Canada. The initial goal of ADNI was to recruit 800 adults, aged 55–90, to participate in the

research, approximately 200 cognitively normal older individuals to be followed for 3 years, 400 people with

MCI to be followed for 3 years and 200 people with early AD to be followed for 2 years. For up-to-date

information, see www.adni-info.org.

Funding

J Bartlett was supported by a grant from the ESRC Follow-On Funding scheme (RES-189-25-0103) and MRC

grant G0900724. S Seaman and I White were supported through a Medical Research Council grant

(MC_US_A030_0015) and unit programme (U105260558). J Carpenter was supported by ESRC Research

Fellowship RES-063-27-0257.

Data collection and sharing for this project was funded by the ADNI (National Institutes of Health

Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of

Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott;

Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca;

Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan

Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company

Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy

Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.;

Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation;

Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health

Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are

facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organisation

is the Northern California Institute for Research and Education, and the study is coordinated by the

Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are

disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles.

This research was also supported by NIH grants P30 AG010129 and K01 AG030514.

References

1. Kenward MG and Carpenter JR. Multiple imputation:
current perspectives. Stat Methods Med Res 2007; 16:
199–218.

2. White IR and Carlin JB. Bias and efficiency of multiple
imputation compared with complete-case analysis for
missing covariate values. Stat Med 2010; 28: 2920–2931.

3. Rubin DB. Multiple imputation for nonresponse in surveys.
New York, NY: Wiley, 1987.

4. White IR, Royston P and Wood AM. Multiple imputation
using chained equations: issues and guidance for practice.
Stat Med 2011; 30: 377–399.

5. van Buuren S. Multiple imputation of
discrete and continuous data by fully
conditional specification. Stat Methods Med Res 2007; 16:
219–242.

Bartlett et al. 485



6. Meng XL. Multiple-imputation inferences with
uncongenial sources of input (with discussion). Stat Sci
1994; 10: 538–573.

7. Schafer JL. Analysis of incomplete multivariate data.
London: Chapman and Hall, 1997.

8. Collins LM, Schafer JL and Kam C.
A comparison of inclusive and restrictive strategies in
modern missing data procedures. Psychol Methods 2001; 6:
330–351.

9. Schafer JL. Multiple imputation in multivariate problems
when the imputation and analysis models differ. Stat Neerl
2003; 57: 19–35.

10. Seaman SR, Bartlett JW and White IR. Multiple
imputation of missing covariates with non-linear effects
and interactions: an evaluation of statistical methods.
BMC Med Res Methodol 2012; 12: 46.

11. Jack CR Jr, Wiste HJ, Vemuri P, et al. Brain beta-amyloid
measures and magnetic resonance imaging atrophy both
predict time-to-progression from mild cognitive
impairment to Alzheimer’s disease. Brain 2010; 133:
3336–3348.

12. Rubin DB. Inference and missing data. Biometrika 1976;
63: 581–592.

13. Liu J, Gelman A, Hill J, et al. On the stationary
distribution of iterative imputations. Biometrika Epub
2013.

14. Arnold BC and Press SJ. Compatible
conditional distributions. J Am Stat Assoc 1989; 84:
152–156.

15. von Hippel PT. How to impute interactions, squares, and
other transformed variables. Sociol Methodol 2009; 39:
265–291.

16. White IR and Royston P. Imputing missing covariate
values for the Cox model. Stat Med 2009; 28: 1982–1998.

17. Ibrahim JG, Chen MH and Lipsitz SR. Monte-Carlo EM
for missing covariates in parametric regression models.
Biometrics 1999; 55: 591–596.

18. Goldstein H, Carpenter JR and Browne WJ.
Fitting multilevel multivariate models with missing
data in responses and covariates that may
include interactions and non-linear terms. J R Stat Soc A
2013.

19. van Buuren S, Brand JPL, Groothuis-Oudshoorn CGM,
et al. Fully conditional specification in
multivariate imputation. J Stat Comput Simul 2006; 76:
1049–1064.

20. Hughes RA, White IR, Seaman S, et al. Joint modelling
rationale for chained equations imputation (under review).

21. Gelman A, Carlin JB, Stern HS, et al. Bayesian data
analysis, 2nd ed. Boca Raton, FL: Chapman & Hall/CRC,
2004.

22. Rathouz PJ. Identifiability assumptions for missing
covariate data in failure time regression models.
Biostatistics 2007; 8: 345–356.

23. van Buuren S. Flexible imputation of missing data. Boca
Raton, FL: Chapman & Hall/CRC, 2012.

24. Wood AM, White IR and Royston P. How should variable
selection be performed with multiply imputed data. Stat
Med 2008; 27: 3227–3246.

25. Little RJA. Regression with missing X’s: A review. J Am
Stat Assoc 1992; 87: 1227–1237.

Appendix

In this appendix, we show that, under certain conditions, at convergence the SMC-FCS algorithm
generates imputations from a well-defined Bayesian model in which the model for YjX,Z is the
substantive model f ðYjX,Z, Þ. First, assume that the covariate models
f ðXj jX�j,Z,�j Þ,�j 2 �j, j ¼ 1, . . . , p, are mutually compatible, with corresponding joint model
f ðXjZ,�Þ,� 2 �. For each j¼ 1, . . . , p, we can then write

f ðXjZ,�Þ ¼ f ðXj jX�j,Z,�j Þ f ðX�jjZ,�j,��jÞ

where ��j ¼ ��jð�Þ is some function of �. Suppose that for each j¼ 1, . . . , p,

f ðX�jjZ,�j,��jÞ ¼ f ðX�jjZ,��jÞ

Suppose further that there exists a prior f ð�Þ such that for each j¼ 1, . . . , p, the induced priors on �j
and ��j factorise as

f ð�Þ ¼ f ð�j,��jÞ ¼ f ð�j Þ f ð��jÞ

In the Gibbs sampler,21 we sample from each unknown component’s conditional distribution, given
the observed data values, current values of other parameters and current imputations of missing

486 Statistical Methods in Medical Research 24(4)



values. Using the re-parametrisation of � to ð�j,��jÞ, we can derive the conditional distribution for
xmis
j used by the Gibbs sampler as

f ðxmis
j j ,�j,��j, y, z, x

obs
j , xmis

�j , x
obs
�j Þ

/ f ð ,�j,��jÞ f ð y, z, x
mis
j , xobsj , xmis

�j , x
obs
�j j ,�j,��jÞ

/ f ð Þ f ð�j Þ f ð��jÞ f ð yjx
mis
j ,xobsj , xmis

�j , x
obs
�j , z, Þ f ðx

mis
j , xobsj jx

mis
�j , x

obs
�j , z,�j Þ f ðx

mis
�j , x

obs
�j jz,��jÞ

/ f ð yjxmis
j , xobsj ,xmis

�j , x
obs
�j , z, Þ f ðx

mis
j , xobsj jx

mis
�j , x

obs
�j , z,�j Þ

where xobs�j denotes the observed values of X�j across all n subjects. This factorises into n independent
densities of the form given in equation (4), as used by SMC-FCS. The conditional distribution for  
used by the Gibbs sampler is given by

f ð j�j,��j, y, z, x
mis
j , xobsj , xmis

�j , x
obs
�j Þ

/ f ð Þ f ð yjxmis
j , xobsj , xmis

�j , x
obs
�j , z, Þ

which is the distribution used by SMC-FCS, as given in equation (5). The conditional distribution
for �j used by the Gibbs sampler is given by

f ð�j j ,��j, y, z, x
mis
j , xobsj , xmis

�j , x
obs
�j Þ

/ f ð�j Þ f ðx
mis
j , xobsj jx

mis
�j , x

obs
�j , z,�j Þ

which is the distribution used by SMC-FCS, as given in equation (6). The Gibbs sampler would then
sample ��j from its conditional distribution. However, since ��j is not required for imputing missing
values in Xj, in SMC-FCS we do not need to sample values of ��j.

It follows that, under the stated conditions, at convergence the SMC-FCS algorithm gives draws
of xmis

1 , : : : , xmis
p from the Bayesian joint model defined by the models f ðYjX,Z, Þ and f ðXjZ,�Þ and

the priors f ð Þ and f ð�Þ.
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